APLICACIÓN DEL ULTRASONIDO EN EL DESHIDRATADO Y CONSERVACIÓN DE FRUTAS: UNA REVISIÓN
Contenido principal del artículo
Resumen
La tecnología de ultrasonido surge como una alternativa no térmica e innovadora para optimizar la deshidratación y conservación de frutas. Este estudio analizó aplicaciones actuales, desafíos y perspectivas futuras mediante una revisión sistemática basada en las pautas PRISMA. La búsqueda en bases como Scopus, ScienceDirect y PubMed abarcó estudios de 2014 a 2024 sobre ultrasonido, procesamiento de frutas y deshidratación. Los análisis de estudios seleccionados muestran que el ultrasonido puede reducir el tiempo de secado hasta un 40 %, mejorar la transferencia de masa y calor, y preservar compuestos bioactivos como polifenoles, carotenoides y vitaminas. Además, los tratamientos combinados, como la deshidratación osmótica asistida por ultrasonido y el secado al vacío, generan efectos sinérgicos, disminuyendo el consumo energético y mejorando la capacidad de rehidratación de los productos. Sin embargo, persisten desafíos en la optimización de parámetros como frecuencia, potencia y duración; así como, en la evaluación de la viabilidad económica para aplicaciones industriales a gran escala. La tecnología de ultrasonido se perfila como una solución eficiente y sostenible para mejorar los procesos de deshidratación de frutas, conservando la calidad nutricional y sensorial de los productos, aunque requiere ajustes para su implementación masiva.
##plugins.themes.bootstrap3.displayStats.downloads##
Detalles del artículo
Sección

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Cómo citar
Referencias
Abrahão, F., Corrêa, J., Sousa, A., Silveira, P., & Nepomuceno, R. (2024). Effect of ultrasound and osmotic dehydration as pretreatments on the infrared drying of banana slices. Food Technology and Biotechnology, 62(3), 384-396. https://doi.org/10.17113/ftb.62.03.24.8409.
Ahmad, F., & Zaidi, S. (2023). The influence of ultrasound-assisted osmotic dehydration as a pre-treatment method on the quality of vacuum dried pineapple. Food and Humanity, 1, 137-146. https://doi.org/10.1016/j.foohum.2023.05.004.
Alfandari, R. & Taylor, B. (2022). Systematic bibliographic database searching for literature reviews: Case study on child protection decision-making. British Journal of Social Work, 52(1), 518-535. https://doi.org/10.1093/bjsw/bcab013.
Amami, E., Khezami, W., Mezrigui, S., Badwaik, L., Bejar, A., Perez, C., & Kechaou, N. (2017). Effect of ultrasound-assisted osmotic dehydration pretreatment on the convective drying of strawberry. Ultrasonics Sonochemistry, 36, 286-300. https://doi.org/10.1016/j.ultsonch.2016.12.007
Anticona, M., Blesa, J., Frigola, A., & Esteve, M. (2020). High biological value compounds extraction from citrus waste with non-conventional methods. Foods, 9(6), 81. https://doi.org/10.3390/foods9060811.
Barman, N., & Badwaik, L. (2017). Effect of ultrasound and centrifugal force on carambola (Averrhoa carambola L.) slices during osmotic dehydration. Ultrasonics Sonochemistry, 34, 37-44. https://doi.org/10.1016/j.ultsonch.2016.05.014.
Bhargava, N., Mor, R., Kumar, K., & Sharanagat, V. (2021). Advances in application of ultrasound in food processing: A review. Ultrasonics Sonochemistry, 70, 105293. https://doi.org/10.1016/j.ultsonch.2020.105293.
Bozkir, H., & Ergün, A. (2020). Effect of sonication and osmotic dehydration applications on the hot air-drying kinetics and quality of persimmon. LWT, 13, 109704. https://doi.org/10.1016/j.lwt.2020.109704.
Campbell, M., McKenzie, J., Sowden, A., Katikireddi, S., Brennan, S., Ellis, S., Hartmann, J., Ryan, R., Shepperd, S., Thomas, J., Welch, V., & Thomson, H. (2020). Synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline. British Medical Journal, 368. https://doi.org/10.1136/BMJ.L6890.
Chu, Y., Wei, S., Ding, Z., Mei, J., & Xie, J. (2021). Application of ultrasound and curing agent during osmotic dehydration to improve the quality properties of freeze-dried yellow peach (Amygdalus persica) slices. Agriculture, 11(11), 1069. https://doi.org/10.3390/ agriculture11111069
Condón, S., Arroyo, C., Álvarez, I., Condón, S., & Lyng, J. (2016). Application of ultrasound in combination with heat and pressure for the inactivation of spore forming bacteria isolated from edible crab (Cancer pagurus). International Journal of Food Microbiology, 223, 9-16. https://doi.org/10.1016/j.ijfoodmicro.2016.02.00
da Cunha, R., Brandão, S., de Medeiros, R., da Silva, E., da Silva, J., & Azoubel, P. (2020). Effect of ethanol pretreatment on melon convective drying. Food Chemistry, 333, 127502. https://doi.org/10.1016/j.foodchem.2020.127502
Fan, K., Zhang, M., & Mujumdar, A. (2017). Application of airborne ultrasound in the convective drying of fruits and vegetables: A review. Ultrasonics Sonochemistry, 39, 47-57. https://doi.org/10.1016/j.ultsonch.2017.04.00.
Fernandes, F., & Rodrigues, S. (2023). Ultrasound applications in drying of fruits from a sustainable development goals perspective. Ultrasonics Sonochemistry, 26, 1509-1516. https://doi.org/10.1016/j.ultsonch.2023.106430.
Fernandes, F., & Rodrigues, S. (2012). Ultrasound as pre-treatment for drying of genipap (Genipa americana L.). International Journal of Food Engineering, 8(3). https://doi.org/10.1515/1556-3758.2480.
Fernandes, F., & Rodrigues, S. (2008). Application of Ultrasound and Ultrasound-Assisted Osmotic Dehydration in Drying of Fruits. Drying Technology, 26, 1509 - 1516. https://doi.org/10.1080/07373930802412256.
Firouz, M., Farahmandi, A., & Hosseinpour, S. (2019). Recent advances in ultrasound application as a novel technique in analysis, processing and quality control of fruits, juices and dairy products industries: A review.. Ultrasonics sonochemistry, 57, 73-88 . https://doi.org/10.1016/J.ULTSONCH.2019.05.014.
Fraga, M., Otero, P., Echave, J., Garcia, P., Carpena, M., Jarboui, A., Nuñez, B., Simal, J., & Prieto, M. (2021). By-products of agri-food industry as tannin-rich sources: A review of tannins biological activities and their potential for valorization. Foods, 10(1), 137. https://doi.org/10.3390/foods10010137.
Hasan, M., Islam, M., Haque, A., Kabir, M., Khushe, K., & Hasan, S. (2024). Trends and challenges of fruit by-products utilization: insights into safety, sensory, and benefits of the use for the development of innovative healthy food: a review. Bioresources and Bioprocessing, 11(1), 10. https://doi.org/10.1186/s40643-023-00722-8.
Hussain, A., Batool, A., Yaqub, S., Iqbal, A., Kauser, S., Arif, M., Ali, S., Gorsi, F., Nisar, R., Hussain, A., Firdous, N., Fatima, H., & Ali, A. (2024). Effects of spray drying and ultrasonic assisted extraction on the phytochemicals, antioxidant and antimicrobial activities of strawberry fruit. Food Chemistry Advances, 5, 100755. https://doi.org/10.1016/j.focha.2024.100755.
Jiang, J., Zhang, M., Devahastin, S., & Yu, D. (2021). Effect of ultrasound-assisted osmotic dehydration pretreatments on drying and quality characteristics of pulsed fluidized bed microwave freeze-dried strawberries. LWT, 145, 111300. https://doi.org/10.1016/j.lwt. 2021.111300.
Kahraman, O., Malvandi, A., Vargas, L., & Feng, H. (2021). Drying characteristics and quality attributes of apple slices dried by a non-thermal ultrasonic contact drying method. Ultrasonics Sonochemistry, 73, 105510. https://doi.org/10.1016/j.ultsonch.2021.105510.
Kailaje, J., Chavan, R., & Annapure, U. (2025). Ultrasound assisted osmotic dehydration of sweet lime (Citrus limetta) slices: Process optimization and mass transfer kinetics. Food Chemistry, 467, 142350. https://doi.org/10.1016/j.foodchem.2024.142350.
Lang, M. (2020). Business model innovation approaches: A systematic literature review. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 68(2), 435-449. https://doi.org/10.11118/actaun202068020435.
Lang, M. (2020). Business model innovation approaches: A systematic literature review. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 68(2), 435-449. https://doi.org/10.11118/actaun202068020435.
Liu, Y., Chen, S., Pu, Y., Muhammad, A., Hang, M., Liu, D., & Ye, T. (2019). Ultrasound-assisted thawing of mango pulp: Effect on thawing rate, sensory, and nutritional properties. Food Chemistry, 286, 576-583. https://doi.org/10.1016/j.foodchem.2019.02.059.
Liu, Y., Zeng, Y., Hu, X., & Sun, X. (2020). Effect of Ultrasonic Power on Water Removal Kinetics and Moisture Migration of Kiwifruit Slices During Contact Ultrasound Intensified Heat Pump Drying. Food and Bioprocess Technology, 13, 430-441. https://doi.org/10.1007/s11947-019-02401-z.
Lupín, B., Lacaze, M., Rodriguez, J., & Mujica, G. (2024). Consumo de alimentos orgánicos y su relación con los ODS. Un estudio para el Partido de General Pueyrredon. Nülan: Universidad Nacional de Mar del Plata. https://ideas.repec.org/p/nmp/nuland/4216.html.
Misra, N., Schlüter, O., & Cullen, P. (Eds.). (2016). Cold plasma in food and agriculture: fundamentals and applications. Academic Press.
Nabi, B., Mukhtar, K., Ansar, S., Hassan, S., Hafeez, M., Bhat, Z., Khaneghag, A., Haq, A., & Aadil, R. (2024). Application of ultrasound technology for the effective management of waste from fruit and vegetable. Ultrasonics Sonochemistry, 102, 106744. https://doi.org/10.1016/j.ultsonch.2023.106744
Nowacka, M., Dadan, M., & Tylewicz, U. (2021). Current Applications of Ultrasound in Fruit and Vegetables Osmotic Dehydration Processes. Applied Sciences, 11(3), 1269. https://doi.org/10.3390/APP11031269.
Nowacka, M., Tappi, S., Tylewicz, U., Luo, W., Rocculi, P., Wesoły, M., Ciosek, P., Dalla, M., & Witrowa, D. (2018). Metabolic and sensory evaluation of ultrasound-assisted osmo-dehydrated kiwifruit. Innovative Food Science & Emerging Technologies, 50, 26-33. https://doi.org/10.1016/j.ifset.2018.08.013
Oliveira, F., Gallão, M., Rodrigues, S., & Fernandes, F. (2011). Dehydration of Malay apple (Syzygium malaccense L.) using ultrasound as pre-treatment. Food and Bioprocess Technology, 4, 610-615. http://dx.doi.org/10.1007/s11947-010-0351-3
Page, M., McKenzie, J., Bossuyt, P., Boutron, I., Hoffmann, T., Mulrow, C., Shamseer, L., Tetzlaff, J., Akl, E., Brennan, S., Chou, R., Glanville, J., Grimshaw, J., Hróbjartsson, A., Lalu, M., Li, T., Loder, E., Mayo, E., McDonald, S., McGuinness, L., Stewart, L., Thomas, J., Tricco, A., Welch, V., Whiting, P., Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. British Medical Journal, 372, n71. doi: 10.1136/bmj. n71.
Pirce, F., Vieira, T., Augusto, T., Alencar, S., Romero, F., & Scheuermann, E. (2021). Effects of convective drying assisted by ultrasound and osmotic solution on polyphenol, antioxidant and microstructure of murtilla (Ugni molinae Turcz) fruit. Journal of Food Science and Technology, 58(1), 138-146. https://doi.org/10.1007/s13197-020-04523-1
Prithani, R., & Dash, K. (2020). Mass transfer modelling in ultrasound assisted osmotic dehydration of kiwi fruit. Innovative Food Science and Emerging Technologies, 64, 102407. https://doi.org/10.1016/j.ifset.2020.102407
Rodrigues, L., Nunes, D., Hodel, K., Viana, J., Silva, E., & Soares, M. (2023). Exotic fruits patents trends: An overview based on technological prospection with a focus on Amazonian. Heliyon, 9(12), e22060. https://doi.org/10.1016/j.heliyon.2023.e22060
Sakooei, R., Peighambardoust, S., Hesari, J., Soltanzadeh, M., & Peressini, D. (2020). Properties of dried apricots pretreated by ultrasound-assisted osmotic dehydration and application of active coatings. Food Technology and Biotechnology, 58(3), 249-259. https://doi.org/10.17113/ftb.58.03.20.6471
Santos, N., Almeida, R., da Silva, G., Monteiro, S., & Andre, A. (2020). Effect of ultrasound pre-treatment on the kinetics and thermodynamic properties of guava slices drying process. Innovative Food Science & Emerging Technologies, 66, 102507. https://doi.org/10.1016/j.ifset.2020.102507
Sharma, M., & Dash, K. (2019). Effect of ultrasonic vacuum pretreatment on mass transfer kinetics during osmotic dehydration of black jamun fruit. Ultrasonics Sonochemistry, 58, 104693. https://doi.org/10.1016/J.ULTSONCH.2019.104693
Siswandi, A., Prismawan, D., & Kambira, P. (2023). The Effects of Heating Temperatures on Passion Fruit Juice’s Ascorbic Acid and Total Phenol Levels. Journal of Fundamental and Applied Pharmaceutical Science, 4(1), 1-7. http://dx.doi.org/10.18196/jfaps.v4i1.18648
Siucińska, K., & Konopacka, D. (2014). Application of ultrasound to modify and improve dried fruit and vegetable tissue: A review. Drying Technology, 32(11), 1360-1368. https://doi.org/10.1080/07373937.2014.916719
Spinei, M., & Oroian, M. (2020). The influence of osmotic treatment assisted by ultrasound on the physico-chemical characteristics of blueberries (Vaccinium myrtillus L.). Ultrasonics, 110, 106298. https://doi.org/10.1016/j.ultras.2020.106298
Tao, Y., Li, D., Chai, W., Show, P., Yang, X., Manickam, S., Xie, G., & Han, Y. (2021). Comparison between airborne ultrasound and contact ultrasound to intensify air drying of blackberry: Heat and mass transfer simulation, energy consumption and quality evaluation. Ultrasonics Sonochemistry, 72, 105410. https://doi.org/10.1016/j.ultsonch. 2020.105410
Thuy, N., Ha, H., & Tai, N. (2020). Kinetics of ascorbic acid loss during thermal treatment in different pH buffer solutions and the presence of oxygen. Food Research, 4(5), 1513-1519. https://doi.org/10.26656/fr.2017.4(5).130
Trigo, J., Alexandre, E., Saraiva, J., & Pintado, M. (2022). High value-added compounds from fruit and vegetable by-products–Characterization, bioactivities, and application in the development of novel food products. Critical Reviews in Food Science and Nutrition, 60(8),1388-1416. https://doi.org/10.1080/10408398.2019.1572588
Van Wee, B. & Banister, D. (2024). Literature review papers: the search and selection process. Journal of Decision System, 33(4), 559-565. https://doi.org/10.1080/12460125. 2023.2197703
Vieira, E., Lins, L., Batista, R., Pimenta, Z., & Azoubel, P. (2018). Influence of ultrasound and vacuum assisted drying on papaya quality parameters. LWT, 97, 317-322. https://doi.org/10.1016/j.lwt.2018.07.017
Villamiel, M., Gamboa, J., Soria, A., Riera, E., García, J., & Montilla, A. (2015). Impact of power ultrasound on the quality of fruits and vegetables during dehydration. Physics Procedia, 70, 828-832. https://doi.org/10.1016/J.PHPRO.2015.08.169
Vodnar, D., Călinoiu, L., Mitrea, L., Precup, G., Bindea, M., Păcurar, A., Szabo, K., & Ştefănescu, B. (2019). A new generation of probiotic functional beverages using bioactive compounds from agro-industrial waste. In: Functional and medicinal beverages (pp. 483-528). Elsevier.
Wang, J., Liu, C., & Zheng, L. (2024). Effect of ultrasound‐assisted osmotic dehydration on the drying characteristics and quality properties of goji. Journal of Food Process Engineering, 47(5). https://doi.org/10.1111/jfpe.14620
Xu, B., Sylvain Tiliwa, E., Yan, W., Roknul, S., Wei, B., Zhou, C., Ma, H., & Bhandari, B. (2022). Recent development in high quality drying of fruits and vegetables assisted by ultrasound: A review. Food Research International, 152, 110744. https://doi.org/10.1016/j.foodres.2021.110744
Yao, L., Fan, L., & Duan, Z. (2020). Effect of different pretreatments followed by hot-air and far-infrared drying on the bioactive compounds, physicochemical property and microstructure of mango slices. Food Chemistry, 305, 125477. https://doi.org/10.1016/j.foodchem. 2019.125477
Zeng, Y., Zhou, W., Yu, J., Zhao, L., Wang, K., Hu, Z., & Liu, X. (2023). By-products of fruit and vegetables: Antioxidant properties of extractable and non-extractable phenolic compounds. Antioxidants, 12(2), 418. https://doi.org/10.3390/antiox12020418