APPLICATION OF ULTRASOUND IN THE PROCESSING AND PRESERVATION OF FRUIT: A REVIEW

Main Article Content

Ronald Marlon Lozano Reátegui
Vitelio Asencios Tarazona

Abstract

Ultrasound technology is emerging as an innovative, non-thermal alternative for optimizing fruit dehydration and preservation. This study analyzed current applications, challenges, and prospects through a systematic review based on PRISMA guidelines. The research in databases such as Scopus, ScienceDirect, and PubMed covered studies on ultrasound, fruit processing, and dehydration from 2014 to 2024. Analyses of selected studies show that ultrasound can reduce drying time by up to 40 %, improve mass and heat transfer, and preserve bioactive compounds such as polyphenols, carotenoids, and vitamins. Furthermore, combined treatments, such as ultrasound-assisted osmotic dehydration and vacuum drying, generate synergistic effects, reducing energy consumption and improving the rehydration capacity of products. However, challenges remain in optimizing parameters such as frequency, power, and duration, as well as in evaluating the economic viability for large-scale industrial applications. Ultrasound technology is emerging as an efficient and sustainable solution for improving fruit dehydration processes, preserving the nutritional and sensory quality of the products, although adjustments are required for widespread implementation.

Downloads

Download data is not yet available.

Article Details

Section

Artículos

How to Cite

APPLICATION OF ULTRASOUND IN THE PROCESSING AND PRESERVATION OF FRUIT: A REVIEW. (2025). Revista De Investigación Intercultural ASAMPITAKOYETE, 1(1), 36-51. https://revistas.unia.edu.pe/index.php/ria/article/view/5

References

Abrahão, F., Corrêa, J., Sousa, A., Silveira, P., & Nepomuceno, R. (2024). Effect of ultrasound and osmotic dehydration as pretreatments on the infrared drying of banana slices. Food Technology and Biotechnology, 62(3), 384-396. https://doi.org/10.17113/ftb.62.03.24.8409.

Ahmad, F., & Zaidi, S. (2023). The influence of ultrasound-assisted osmotic dehydration as a pre-treatment method on the quality of vacuum dried pineapple. Food and Humanity, 1, 137-146. https://doi.org/10.1016/j.foohum.2023.05.004.

Alfandari, R. & Taylor, B. (2022). Systematic bibliographic database searching for literature reviews: Case study on child protection decision-making. British Journal of Social Work, 52(1), 518-535. https://doi.org/10.1093/bjsw/bcab013.

Amami, E., Khezami, W., Mezrigui, S., Badwaik, L., Bejar, A., Perez, C., & Kechaou, N. (2017). Effect of ultrasound-assisted osmotic dehydration pretreatment on the convective drying of strawberry. Ultrasonics Sonochemistry, 36, 286-300. https://doi.org/10.1016/j.ultsonch.2016.12.007

Anticona, M., Blesa, J., Frigola, A., & Esteve, M. (2020). High biological value compounds extraction from citrus waste with non-conventional methods. Foods, 9(6), 81. https://doi.org/10.3390/foods9060811.

Barman, N., & Badwaik, L. (2017). Effect of ultrasound and centrifugal force on carambola (Averrhoa carambola L.) slices during osmotic dehydration. Ultrasonics Sonochemistry, 34, 37-44. https://doi.org/10.1016/j.ultsonch.2016.05.014.

Bhargava, N., Mor, R., Kumar, K., & Sharanagat, V. (2021). Advances in application of ultrasound in food processing: A review. Ultrasonics Sonochemistry, 70, 105293. https://doi.org/10.1016/j.ultsonch.2020.105293.

Bozkir, H., & Ergün, A. (2020). Effect of sonication and osmotic dehydration applications on the hot air-drying kinetics and quality of persimmon. LWT, 13, 109704. https://doi.org/10.1016/j.lwt.2020.109704.

Campbell, M., McKenzie, J., Sowden, A., Katikireddi, S., Brennan, S., Ellis, S., Hartmann, J., Ryan, R., Shepperd, S., Thomas, J., Welch, V., & Thomson, H. (2020). Synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline. British Medical Journal, 368. https://doi.org/10.1136/BMJ.L6890.

Chu, Y., Wei, S., Ding, Z., Mei, J., & Xie, J. (2021). Application of ultrasound and curing agent during osmotic dehydration to improve the quality properties of freeze-dried yellow peach (Amygdalus persica) slices. Agriculture, 11(11), 1069. https://doi.org/10.3390/ agriculture11111069

Condón, S., Arroyo, C., Álvarez, I., Condón, S., & Lyng, J. (2016). Application of ultrasound in combination with heat and pressure for the inactivation of spore forming bacteria isolated from edible crab (Cancer pagurus). International Journal of Food Microbiology, 223, 9-16. https://doi.org/10.1016/j.ijfoodmicro.2016.02.00

da Cunha, R., Brandão, S., de Medeiros, R., da Silva, E., da Silva, J., & Azoubel, P. (2020). Effect of ethanol pretreatment on melon convective drying. Food Chemistry, 333, 127502. https://doi.org/10.1016/j.foodchem.2020.127502

Fan, K., Zhang, M., & Mujumdar, A. (2017). Application of airborne ultrasound in the convective drying of fruits and vegetables: A review. Ultrasonics Sonochemistry, 39, 47-57. https://doi.org/10.1016/j.ultsonch.2017.04.00.

Fernandes, F., & Rodrigues, S. (2023). Ultrasound applications in drying of fruits from a sustainable development goals perspective. Ultrasonics Sonochemistry, 26, 1509-1516. https://doi.org/10.1016/j.ultsonch.2023.106430.

Fernandes, F., & Rodrigues, S. (2012). Ultrasound as pre-treatment for drying of genipap (Genipa americana L.). International Journal of Food Engineering, 8(3). https://doi.org/10.1515/1556-3758.2480.

Fernandes, F., & Rodrigues, S. (2008). Application of Ultrasound and Ultrasound-Assisted Osmotic Dehydration in Drying of Fruits. Drying Technology, 26, 1509 - 1516. https://doi.org/10.1080/07373930802412256.

Firouz, M., Farahmandi, A., & Hosseinpour, S. (2019). Recent advances in ultrasound application as a novel technique in analysis, processing and quality control of fruits, juices and dairy products industries: A review.. Ultrasonics sonochemistry, 57, 73-88 . https://doi.org/10.1016/J.ULTSONCH.2019.05.014.

Fraga, M., Otero, P., Echave, J., Garcia, P., Carpena, M., Jarboui, A., Nuñez, B., Simal, J., & Prieto, M. (2021). By-products of agri-food industry as tannin-rich sources: A review of tannins biological activities and their potential for valorization. Foods, 10(1), 137. https://doi.org/10.3390/foods10010137.

Hasan, M., Islam, M., Haque, A., Kabir, M., Khushe, K., & Hasan, S. (2024). Trends and challenges of fruit by-products utilization: insights into safety, sensory, and benefits of the use for the development of innovative healthy food: a review. Bioresources and Bioprocessing, 11(1), 10. https://doi.org/10.1186/s40643-023-00722-8.

Hussain, A., Batool, A., Yaqub, S., Iqbal, A., Kauser, S., Arif, M., Ali, S., Gorsi, F., Nisar, R., Hussain, A., Firdous, N., Fatima, H., & Ali, A. (2024). Effects of spray drying and ultrasonic assisted extraction on the phytochemicals, antioxidant and antimicrobial activities of strawberry fruit. Food Chemistry Advances, 5, 100755. https://doi.org/10.1016/j.focha.2024.100755.

Jiang, J., Zhang, M., Devahastin, S., & Yu, D. (2021). Effect of ultrasound-assisted osmotic dehydration pretreatments on drying and quality characteristics of pulsed fluidized bed microwave freeze-dried strawberries. LWT, 145, 111300. https://doi.org/10.1016/j.lwt. 2021.111300.

Kahraman, O., Malvandi, A., Vargas, L., & Feng, H. (2021). Drying characteristics and quality attributes of apple slices dried by a non-thermal ultrasonic contact drying method. Ultrasonics Sonochemistry, 73, 105510. https://doi.org/10.1016/j.ultsonch.2021.105510.

Kailaje, J., Chavan, R., & Annapure, U. (2025). Ultrasound assisted osmotic dehydration of sweet lime (Citrus limetta) slices: Process optimization and mass transfer kinetics. Food Chemistry, 467, 142350. https://doi.org/10.1016/j.foodchem.2024.142350.

Lang, M. (2020). Business model innovation approaches: A systematic literature review. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 68(2), 435-449. https://doi.org/10.11118/actaun202068020435.

Lang, M. (2020). Business model innovation approaches: A systematic literature review. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 68(2), 435-449. https://doi.org/10.11118/actaun202068020435.

Liu, Y., Chen, S., Pu, Y., Muhammad, A., Hang, M., Liu, D., & Ye, T. (2019). Ultrasound-assisted thawing of mango pulp: Effect on thawing rate, sensory, and nutritional properties. Food Chemistry, 286, 576-583. https://doi.org/10.1016/j.foodchem.2019.02.059.

Liu, Y., Zeng, Y., Hu, X., & Sun, X. (2020). Effect of Ultrasonic Power on Water Removal Kinetics and Moisture Migration of Kiwifruit Slices During Contact Ultrasound Intensified Heat Pump Drying. Food and Bioprocess Technology, 13, 430-441. https://doi.org/10.1007/s11947-019-02401-z.

Lupín, B., Lacaze, M., Rodriguez, J., & Mujica, G. (2024). Consumo de alimentos orgánicos y su relación con los ODS. Un estudio para el Partido de General Pueyrredon. Nülan: Universidad Nacional de Mar del Plata. https://ideas.repec.org/p/nmp/nuland/4216.html.

Misra, N., Schlüter, O., & Cullen, P. (Eds.). (2016). Cold plasma in food and agriculture: fundamentals and applications. Academic Press.

Nabi, B., Mukhtar, K., Ansar, S., Hassan, S., Hafeez, M., Bhat, Z., Khaneghag, A., Haq, A., & Aadil, R. (2024). Application of ultrasound technology for the effective management of waste from fruit and vegetable. Ultrasonics Sonochemistry, 102, 106744. https://doi.org/10.1016/j.ultsonch.2023.106744

Nowacka, M., Dadan, M., & Tylewicz, U. (2021). Current Applications of Ultrasound in Fruit and Vegetables Osmotic Dehydration Processes. Applied Sciences, 11(3), 1269. https://doi.org/10.3390/APP11031269.

Nowacka, M., Tappi, S., Tylewicz, U., Luo, W., Rocculi, P., Wesoły, M., Ciosek, P., Dalla, M., & Witrowa, D. (2018). Metabolic and sensory evaluation of ultrasound-assisted osmo-dehydrated kiwifruit. Innovative Food Science & Emerging Technologies, 50, 26-33. https://doi.org/10.1016/j.ifset.2018.08.013

Oliveira, F., Gallão, M., Rodrigues, S., & Fernandes, F. (2011). Dehydration of Malay apple (Syzygium malaccense L.) using ultrasound as pre-treatment. Food and Bioprocess Technology, 4, 610-615. http://dx.doi.org/10.1007/s11947-010-0351-3

Page, M., McKenzie, J., Bossuyt, P., Boutron, I., Hoffmann, T., Mulrow, C., Shamseer, L., Tetzlaff, J., Akl, E., Brennan, S., Chou, R., Glanville, J., Grimshaw, J., Hróbjartsson, A., Lalu, M., Li, T., Loder, E., Mayo, E., McDonald, S., McGuinness, L., Stewart, L., Thomas, J., Tricco, A., Welch, V., Whiting, P., Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. British Medical Journal, 372, n71. doi: 10.1136/bmj. n71.

Pirce, F., Vieira, T., Augusto, T., Alencar, S., Romero, F., & Scheuermann, E. (2021). Effects of convective drying assisted by ultrasound and osmotic solution on polyphenol, antioxidant and microstructure of murtilla (Ugni molinae Turcz) fruit. Journal of Food Science and Technology, 58(1), 138-146. https://doi.org/10.1007/s13197-020-04523-1

Prithani, R., & Dash, K. (2020). Mass transfer modelling in ultrasound assisted osmotic dehydration of kiwi fruit. Innovative Food Science and Emerging Technologies, 64, 102407. https://doi.org/10.1016/j.ifset.2020.102407

Rodrigues, L., Nunes, D., Hodel, K., Viana, J., Silva, E., & Soares, M. (2023). Exotic fruits patents trends: An overview based on technological prospection with a focus on Amazonian. Heliyon, 9(12), e22060. https://doi.org/10.1016/j.heliyon.2023.e22060

Sakooei, R., Peighambardoust, S., Hesari, J., Soltanzadeh, M., & Peressini, D. (2020). Properties of dried apricots pretreated by ultrasound-assisted osmotic dehydration and application of active coatings. Food Technology and Biotechnology, 58(3), 249-259. https://doi.org/10.17113/ftb.58.03.20.6471

Santos, N., Almeida, R., da Silva, G., Monteiro, S., & Andre, A. (2020). Effect of ultrasound pre-treatment on the kinetics and thermodynamic properties of guava slices drying process. Innovative Food Science & Emerging Technologies, 66, 102507. https://doi.org/10.1016/j.ifset.2020.102507

Sharma, M., & Dash, K. (2019). Effect of ultrasonic vacuum pretreatment on mass transfer kinetics during osmotic dehydration of black jamun fruit. Ultrasonics Sonochemistry, 58, 104693. https://doi.org/10.1016/J.ULTSONCH.2019.104693

Siswandi, A., Prismawan, D., & Kambira, P. (2023). The Effects of Heating Temperatures on Passion Fruit Juice’s Ascorbic Acid and Total Phenol Levels. Journal of Fundamental and Applied Pharmaceutical Science, 4(1), 1-7. http://dx.doi.org/10.18196/jfaps.v4i1.18648

Siucińska, K., & Konopacka, D. (2014). Application of ultrasound to modify and improve dried fruit and vegetable tissue: A review. Drying Technology, 32(11), 1360-1368. https://doi.org/10.1080/07373937.2014.916719

Spinei, M., & Oroian, M. (2020). The influence of osmotic treatment assisted by ultrasound on the physico-chemical characteristics of blueberries (Vaccinium myrtillus L.). Ultrasonics, 110, 106298. https://doi.org/10.1016/j.ultras.2020.106298

Tao, Y., Li, D., Chai, W., Show, P., Yang, X., Manickam, S., Xie, G., & Han, Y. (2021). Comparison between airborne ultrasound and contact ultrasound to intensify air drying of blackberry: Heat and mass transfer simulation, energy consumption and quality evaluation. Ultrasonics Sonochemistry, 72, 105410. https://doi.org/10.1016/j.ultsonch. 2020.105410

Thuy, N., Ha, H., & Tai, N. (2020). Kinetics of ascorbic acid loss during thermal treatment in different pH buffer solutions and the presence of oxygen. Food Research, 4(5), 1513-1519. https://doi.org/10.26656/fr.2017.4(5).130

Trigo, J., Alexandre, E., Saraiva, J., & Pintado, M. (2022). High value-added compounds from fruit and vegetable by-products–Characterization, bioactivities, and application in the development of novel food products. Critical Reviews in Food Science and Nutrition, 60(8),1388-1416. https://doi.org/10.1080/10408398.2019.1572588

Van Wee, B. & Banister, D. (2024). Literature review papers: the search and selection process. Journal of Decision System, 33(4), 559-565. https://doi.org/10.1080/12460125. 2023.2197703

Vieira, E., Lins, L., Batista, R., Pimenta, Z., & Azoubel, P. (2018). Influence of ultrasound and vacuum assisted drying on papaya quality parameters. LWT, 97, 317-322. https://doi.org/10.1016/j.lwt.2018.07.017

Villamiel, M., Gamboa, J., Soria, A., Riera, E., García, J., & Montilla, A. (2015). Impact of power ultrasound on the quality of fruits and vegetables during dehydration. Physics Procedia, 70, 828-832. https://doi.org/10.1016/J.PHPRO.2015.08.169

Vodnar, D., Călinoiu, L., Mitrea, L., Precup, G., Bindea, M., Păcurar, A., Szabo, K., & Ştefănescu, B. (2019). A new generation of probiotic functional beverages using bioactive compounds from agro-industrial waste. In: Functional and medicinal beverages (pp. 483-528). Elsevier.

Wang, J., Liu, C., & Zheng, L. (2024). Effect of ultrasound‐assisted osmotic dehydration on the drying characteristics and quality properties of goji. Journal of Food Process Engineering, 47(5). https://doi.org/10.1111/jfpe.14620

Xu, B., Sylvain Tiliwa, E., Yan, W., Roknul, S., Wei, B., Zhou, C., Ma, H., & Bhandari, B. (2022). Recent development in high quality drying of fruits and vegetables assisted by ultrasound: A review. Food Research International, 152, 110744. https://doi.org/10.1016/j.foodres.2021.110744

Yao, L., Fan, L., & Duan, Z. (2020). Effect of different pretreatments followed by hot-air and far-infrared drying on the bioactive compounds, physicochemical property and microstructure of mango slices. Food Chemistry, 305, 125477. https://doi.org/10.1016/j.foodchem. 2019.125477

Zeng, Y., Zhou, W., Yu, J., Zhao, L., Wang, K., Hu, Z., & Liu, X. (2023). By-products of fruit and vegetables: Antioxidant properties of extractable and non-extractable phenolic compounds. Antioxidants, 12(2), 418. https://doi.org/10.3390/antiox12020418