TRADITIONAL TECHNOLOGICAL PROCESS OF COFFEE BEAN: A REVIEW

Main Article Content

Luis B. Ramos-Sánchez
Rafael Pimentel-Pérez
Diana D. Alcalá-Galiano Morell
Nemecio González-Fernández
Hilda de las Mercedes Oquendo-Ferrer
Rutdali Segura-Silva
Laura de la Caridad Arias-Águila
Iván Sala-Sánchez
Mario Leyva

Abstract

This study aimed to comprehensively analyze the traditional coffee processing process and identify technological innovations for its improvement, with the goal of boosting the sector's recovery. A bibliometric analysis of scientific articles and patents related to coffee post-harvest technology was conducted. The patent analysis identified fermentation as the focus of technological innovations. This overview indicates that producers must join the race for technological development, leveraging their experience in biotechnological processes, which is key to the necessary improvements. The influence of climate change and rising coffee prices highlights the urgent need to modernize processes, with special emphasis on the Robusta variety. The coffee industry is undergoing a technological revolution to address these challenges and quality demands. Traditional technologies are being innovated to increase their productivity and effectiveness, while also moving toward greater sustainability and waste recovery within a circular economy framework under the concept of biorefinery.

Downloads

Download data is not yet available.

Article Details

Section

Artículos

How to Cite

TRADITIONAL TECHNOLOGICAL PROCESS OF COFFEE BEAN: A REVIEW. (2025). Revista De Investigación Intercultural ASAMPITAKOYETE, 1(1), 112-127. https://revistas.unia.edu.pe/index.php/ria/article/view/12

References

Adadi, P., Mensah, E., Blay, B., Ahmmed, M., Sumaiya, K., Agyei, D., & Kebede, B. (2024). Advancements in civet coffee production and analytical techniques: From aroma profiling to market dynamics and ethical considerations. Trends in Food Science & Technology, 154, 104772. https://doi.org/10.1016/j.tifs.2024.104772

Akira, H., Shimpei, H., & Yuta, N. (2020). Method For Producing Fermented Coffee Beans (Japan Patent No. U. P. Office. Young Youb SONG)

Aristizábal, V., Chacón, Y., & Cardona, C. (2017). The biorefinery concept for the industrial valorization of coffee processing by-products. In C. M. Galanakis (Ed.), Handbook of Coffee Processing By-Products (1st ed., pp. 63-92). Elsevier Inc.

Bagnulo, E., Strocchi, G., Bicchi, C., & Liberto, E. (2024). Industrial food quality and consumer choice: Artificial intelligence-based tools in the chemistry of sensory notes in comfort foods (coffee, cocoa and tea). Trends in Food Science & Technology, 147(104415). https://doi.org/https://doi.org/10.1016/j.tifs.2024.104415

Campos, G. (2022). Wet-coffee processing production wastes: Quality, Potentials, and Valorization Opportunities Tesis de Doctorado, Universität Potsdam]. DOI:10.25932/publishup-55882.

Caracostea, L., Sîrbu, R., & Sîrbu, R. (2021). Determination of Caffeine Content in Arabica and Robusta Green Coffee of Indian Origin. European Journal of Natural Sciences and Medicine, 4(1), 69-79. DOI:10.26417/425qba31z.

Casas, P., Ascencio, F., & Ragazzo, J. (2018). Determination of potentially mycotoxigenic fungi in coffee (Coffea arabica L.) from Nayarit. Food Science and Biotechnology, 27(3), 891–898. https://doi.org/10.1007/s10068-017-0288-7.

Cavanagh, Q., Brooks, M., & Rupasinghe, H. (2023). Innovative technologies used to convert spent coffee grounds into new food ingredients: Opportunities, challenges, and prospects. Future Foods 8(100255). https://doi.org/10.1016/j.fufo.2023.100255.

Cortés, V., Monje, A., Vanegas, J., & Guzmán, N. (2024). Challenges in coffee fermentation technologies: bibliometric análisis and critical review. Journal of Food Science and Technology, 61(12), 2223-2234. doi: 10.1007/s13197-024-06054-5.

Cruz, R., Piraneque, N., Aguirre, S., & Ramirez, J. (2020). Microorganisms in coffee fermentation: A bibliometric and systematic literature network analysis related to agriculture and beverage quality (1965-2019). Coffee Science, 15, e151773. https://doi.org/10.25186/.v15i.1773.

de Freitas, C., Coelho, R., Costa, J., & Sentelhas, P. (2024). A bitter cup of coffee? Assessing the impact of climate change on Arabica coffee production in Brazil. Science of The Total Environment, 957,177546. https://doi.org/https:lfdoi.org/10.1016/j.scitotenv.2024.177546.

Duarte, A., & Villamil, E. (2021). Eco-Friendly Horizontal-Axis Hydro washer for Fermented Coffee (Colombia Patent No. 20210227870).

Elhalis, H., Cox, J., & Zhao, J. (2023). Coffee fermentation: Expedition from traditional to controlled process and perspectives for industrialization. Applied Food Research, 3, 100253. https://doi.org/10.1016/j.afres.2022.100253.

Ferreira, L., Bertarini, P., Amaral, L., Gomes, M., Oliveira, L., & Santos, L. (2024). Coinoculation of Saccharomyces cerevisiae and Bacillus amyloliquefaciens in solid-state and submerged coffee fermentation: Influences on chemical and sensory compositions. Food Science and Technology 202, 116299. https://doi.org/10.1016/j.lwt.2024.116299.

Gänzle, M., Monnin, L., Zheng, J., Zhang, L., Coton, M., Sicard, D., & Walter, J. (2024). Starter Culture Development and Innovation for Novel Fermented Foods. Annual Review ofFood Science and Technology, 15, 211–239. https://doi.org/10.1146/annurev-food-072023-034207.

Garrido, E., Hernández, E., Espinosa, N., Camas, R., Quiroga, R., Rincón, M., & Farrera, L. (2018). Identificación de Hongos y Micotoxinas Asociadas a Granos de Café (Coffea L.) en Chiapas, Mexico. Agroproductividad, 11(12), 57-64. https://doi.org/10.32854/agrop.v11i12.1307

Graytock, A. (2024). Is Robusta on the Rise? Trends in Coffee Species Trade. U.S. International Trade Commission.

Hikichi, S., Andrade, R., Dias, E., & Duarte, W. (2017). Biotechnological applications of coffee processing by-products. In C. M. Galanakis (Ed.), Handbook of Coffee Processing By-Products (1st ed., pp. 221-244). Elsevier Inc.

Ho, J., & Jin, P. (2020). Method for Fermenting Green Coffee Beans, and Fermentation Container Therefor (Corea de Sur Patent No. WO2020251220A1

International Coffee Organization’s. (2024a). Beyond Coffee- Towards a Circular Coffee Economy Overview (Coffee Development Report 2022-23, Issue.

International Coffee Organization’s. (2024b). Robustas at 47-year high for two consecutive months (Coffee Market Report, Issue.

Jackels, C., & Jackels, S. (2006). Coffee Fermentation Kit and Method (USA Patent No. US20060204620A1

Jaleta, A. (2021). Climate Change and Coffee Production: A Review. Journal of Earth Science & Climatic Change 12(1). https://www.omicsonline.org/open-access-pdfs/climate-change-and-coffee-production-a-review.pdf

Júnior, C., Batista, N., Martinez, S., Bressani, A., Dias, D., & Schwan, R. (2024). Impact of scaling up on coffee fermentation using starter cultures. Applied Food Research, 4(2). https://doi.org/10.1016/j.afres.2024.100611.

Kelis, V., Balog, J., Zsellér, V., Karancsi, T., Sabin, G., & Hantao, L. (2025). Prediction of coffee traits by artificial neural networks and laser-assisted rapid evaporative ionization mass spectrometry. Food Research International, 203, 115773. https://doi.org/https://doi.org/10.1016/j.foodres.2025.115773

Kim, S., Kim, H., Choi, K., & Cho, M. (2024). Method for Producing Fermented Coffee Cultured with Grain Solid-Type Mushroom Mycelium Seeds (Corea del Sur Patent No. KR101954349B1).

Lavazza, G. (2024). Annual Report 2023. C. Communication.

Lee, P. (2021). System and Method of Manufacturing a Fermented Coffee Formulation (USA Patent No. US11470852B2).

Lee, S., & Lee, H. (2023). Method for Producing Fermented Green Coffee Beans by Complex Fermentation, and Fermented Green Coffee Beans Produced Thereby (Corea del Sur Patent No. KR101954349B1).

Lei, F. (2022). Secondary-Fermentation Method for Coffee, and Coffee (China Patent No. WO2022233091).

Li, P., Li, C., & Li, C. (2010). Method for Manufacturing Coffee by Solid-State Fermentation (USA. Patent No. US20100239711A1).

Loor, D., & Deroncele, N. (2018). Sentido de pertenencia laboral desde una perspectiva psicosocial formativa. Maestro y Sociedad, 15-26. https://maestroysociedad.uo.edu.cu/index.php/MyS/article/view/3373

Mahanil, S., Athinuwat, D., Klomchit, A., & Phonwong, K. (2024). Assessing the Impact of Yeast Fermentation in Dry Processing on Coffee Quality from Coffea arabica cv. Caltimor, C. arabica cv. Bourbon and C. canephora cv. Robusta. Trends in Sciences, 21. https://doi.org/10.48048/tis.2024.8132

Martil, D. (2022). Dynamic modelling of Saccharomyces cerevisiae Central Carbon Metabolism Tesis de Doctorado, Technische Universiteit Eindhoven]. https://pure.tue.nl/ws/portalfiles/portal/216368731/20221020_Lao_Martil_hf.pdf.

Mesa, D., Figueroa, J., Leyes, E., Castillo, C., Collazo, A., Nunez, H., Viltres, D., Mirabal, Y., & Coll, Y. (2024). Preliminary Physical and Chemical Characterization of By-Products from Cuban Coffee Production. Foods, 13(21). https://doi.org/10.3390/foods13213348

Milo, C., & Duboc, P. (2005). Fermented Coffee Beverage (USA Patent No. WO 2005/048727 Al).

Mitchell, D. Krieger, N., & Berovic, M. (2006). Solid-State Fermentation Bioreactors (1st ed.). Springer.

Montes, R., Vasallo, L., Martínez, L., Escarré, A., & Bonet, A. (2024). Cuban Coffee Production: An Analysis from 1950 to 2017. International Journal of Cuban Studies, 16(1). https://doi.org/10.13169/intejcubastud.16.1.0123

Natsume, H., & Okamoto, S. (2025). Cross-Brand Machine Learning of Coffee’s Temporal Liking from Temporal Dominance of Sensations Curves. Applied Sciences, 15(948). https://doi.org/https://doi.org/10.3390/app15020948

Neto, D., Pereira, G., Finco, A., Rodrigues, C., Carvalho, J., & Soccol, C. (2020). Microbiological, physicochemical and sensory studies of coffee beans fermentation conducted in a yeast bioreactor model. Food Biotechnology, 34(2), 172–192. https://doi.org/https://doi.org/10.1080/08905436.2020.1746666

Paterson, R., Lima, N., & Taniwaki, M. (2014). Coffee, mycotoxins and climate change. Food Research International, 61, 1–15. https://doi.org/10.1016/j.foodres.2014.03.037

Peluso, M. (2023). Navigating the Coffee Business Landscape: Challenges and Adaptation Strategies in a Changing World. Proceedings, 89(22). https://doi.org/https://doi.org/10.3390/ICC2023-14825

Peñuela, A., Moreno, S., & Medina, R. (2023). Influence of Temperature-Controlled Fermentation on the Quality of Mild Coffee (Coffea arabica L.) Cultivated at Different Elevations. Agriculture, 13, 1132. https://doi.org/10.3390/agriculture13061132.

Polanía, A., López, J., Torres, L., & Plaza, J. (2024). Development of Starter Inoculum for Controlled Arabica Coffee Fermentation Using Coffee By-Products (Pulp and Mucilage Broth), Yeast, and Lactic Acid Bacteria. Fermentation, 10(10). https://doi.org/10.3390/fermentation10100516

Rojas, Y., Vásquez, W., & Moreno, D. (2021). Evaluación de la calidad de vida en el trabajo en productores de café en Cundinamarca, Colombia. Ciencia y Tecnología Agropecuaria, 23(1)), e1885. https://doi.org/https://doi.org/10.21930/rcta.vol23_num1_art:1885

Ruta, L., & Farcasanu, I. (2021). Coffee and Yeasts: From Flavor to Biotechnology. Fermentation, 7(9). https://doi.org/10.3390/fermentation7010009

Saerens, S., & Swiegers, H. (2016). Enhancement of Coffee Quality and Flavor by Using Pichia Kluyveri Yeast Starter Culture for Coffee Fermentation (DK Patent No. WO2014177666A1).

Salem, F., Lebrun, M., Mestres, C., Sieczkowski, N., Boulanger, R., & Collignan, A. (2020). Transfer kinetics of labeled aroma compounds from liquid media into coffee beans during simulated wet processing conditions. Food Chemistry, 322(126779). https://doi.org/https://doi.org/10.1016/j.foodchem.2020.126779

Sandhu, C. (2015). Targeted Pectin Hydrolysis by Recombinant E. Coli Expressing Chimeric Pectinases to Facilitate Coffee Fermentation (USA Patent No.

Silamba, I., Salengke, S., Adiansyah, & Hasizah, A. (2024). Enhancing coffee sensory quality: unleashing synergistic effects of selected microorganism starter cultures and ohmic heating technology. OP Conf. Series: Earth and Environmental Science, 1356(1), 012034

DOI:10.1088/1755-1315/1356/1/012034

Silva, L., Pereira, P., Cruz, M., Costa, G., Rocha, R., Bertarini, P., Amaral, L., Gomes, M., & Santos, L. (2024). Enhancing Sensory Quality of Coffee: The Impact of Fermentation Techniques on Coffea arabica cv. Catiguá MG2. Foods, 13(653). https://doi.org/10.3390/foods13050653

Takahashi, K., Minami, Y., Kanabuchi, Y., Togami, K., & Mitsuhashi, M. (2018). Method of Processing Green Coffee Beans (Japan Patent No. U. S. P. Office.

Takashi, S., Maho, K., Kazuo, T., & Takahiro, I. (2010). Method for Producing New Fermented Coffee and Fermented Coffee Produced Thereby (Japan Patent No. J. INPIT.

Todhanakasem, T., Tai, N., Pornpukdeewattana, S., Charoenrat, T., Young, B., & Wattanachaisaereekul, S. (2024). The Relationship Between Microbial Communities in Coffee Fermentation and Sense and Metabolite Profiles of Finished Products. Research Square. https://doi.org/10.21203/rs.3.rs-3848032/v1.

Tsigkou, K., Demissie, B., Hashim, S., Ghofrani, P., Thomas, R., Mapinga, K., Kassahun, S., & Angelidaki, I. (2025). Coffee processing waste: Unlocking opportunities for sustainable development. Renewable and Sustainable Energy Reviews, 210(115263). https://doi.org/10.1016/j.rser.2024.115263.

Tsuji, S., Fujiwara, H., & Nakashima, K. (2022). Extracted and Fermented Composition of Coffee Cherry Pulp and Skin and Method for Producing Same (Japan Patent No. JP 2018-057369 A).

Wu, H., Viejo, C., Fuentes, S., & Suleria, H. (2023). The Impact of Wet Fermentation on Coffee Quality Traits and Volatile Compounds Using Digital Technologies. Fermentation, 9, 68. https://doi.org/10.3390/fermentation9010068.

Yonezawa, T., Yomo, H., & Nakajima, T. (2009). Method of Processing Green Coffee Beans by Using Surface-Treated Coffee Cherries (Japan Patent No. EP1875807B1).

Zamora, A., & Olmedo, J. (2021). Plan de Acción para la Implementación de las 63 Medidas Aprobadas para Dinamizar la Producción Agropecuaria. La Habana: CITMA.